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ABSTRACT   

A composite fuselage aircraft forward section was inspected with flash thermography.  The fuselage section is 24 

feet long and approximately 8 feet in diameter.  The structure is primarily configured with a composite sandwich 

structure of carbon fiber face sheets with a Nomex® honeycomb core.  The outer surface area was inspected.  The 

thermal data consisted of 477 data sets totaling in size of over 227 Gigabytes.  Principal component analysis (PCA) 

was used to process the data sets for substructure and defect detection.  A fixed eigenvector approach using a global 

covariance matrix was used and compared to a varying eigenvector approach.  The fixed eigenvector approach was 

demonstrated to be a practical analysis method for the detection and interpretation of various defects such as paint 

thickness variation, possible water intrusion damage, and delamination damage.  In addition, inspection 

considerations are discussed including coordinate system layout, manipulation of the fuselage section, and the 

manual scanning technique used for full coverage.   
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1. INTRODUCTION  

A composite fuselage aircraft forward and aft sections were obtained by the nondestructive evaluation sciences branch 

(NESB) NASA Langley for nondestructive evaluation (NDE) measurements.  The aircraft sections were manufactured 

around 2004 and were obtained from Wichita State University.  The aircraft sections were from a Hawker 4000, a 

midsize business jet manufactured by Beechcraft.  This jet represented the first in its class to primarily utilize a 

composite construction. The fuselage forward section is 7.3 meters long and approximately 2.4 meters in diameter.  

Pictures of the fuselage sections are shown in figure 1.  The composite aircraft is comprised of a composite sandwich 

structure with both Nomex® and aluminum core. The outer skins were carbon fiber face sheets.  Flash thermography 

was used to perform full coverage inspection and has been shown to be an effective inspection technique for composite  

 

 
 

Figure 1. Forward and aft fuselage sections. 
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sandwich structures [1-4]. Flash thermography advantages are noncontact, rapid and safe.  The inspection requires only a 

small amount of heat (less than 10 degrees C above ambient). The outer mold line (OML) area of the forward section 

was inspected.  The flash thermography inspection foot print was approximately 23 x 33 centimeters.  Each inspection 

footprint represented a thermal data set to be processed into an inspection image.  For full coverage, the thermal data 

consisted of 477 data sets totaling in size of over 227 Gigabytes and covering approximately 36 square meters.  Principal 

component analysis (PCA) was used to process the data sets for substructure and defect detection.  A fixed eigenvector 

approach using a global covariance matrix was used and compared to a varying eigenvector approach.  The fixed 

eigenvector approach was demonstrated to be a practical analysis method for the detection and interpretation of various 

defects such as paint thickness variation, possible water intrusion damage, and delamination damage.  In addition, 

inspection considerations are discussed including coordinate system layout, manipulation of the fuselage section, and the 

manual scanning technique used for full coverage.   

2. FUSELAGE INSPECTION 

A commercially available flash thermography system was used for the inspection.  The flash thermography system 

consisted of two linear flash tubes mounted within a hood. An infrared camera was mounted at the back of the hood 

viewing through a circular hole between the flash tubes and were positioned to view the hood opening.  In this 

configuration, the flash lamps heated an area equal to the hood opening and the infrared camera captured the thermal 

response.  The infrared camera operates in the mid-wave infrared band (3-5 micrometers) and is configured with a 25 

mm germanium lens.  The focal plane array size for the camera is 1344 x 784 with a detector pitch size of 14 x 14 

micrometers.  The inspection area was approximately 23 x 33 centimeters.  The camera frame rate was 60Hz.  For each 

inspection, 10 frames were acquired before heating and 890 frames were acquired after the flash (14.83 seconds).   For 

full coverage, a coordinate system was necessary to track the data sets corresponding to the location on the fuselage.  

The coordinate system was started on the crown starting with the letter A and ending with the letter O on both the 

starboard and port sides.  This defined each row around the circumference.  The columns within each row were 

designated by a number from 1 to 20 starting from the fuselage front (nose).  Not every row had 20 columns because of 

doors, windows, and other features that lacked the composite structure of interest. Two areas on the tapering nose did not 

fit the regular row-column layout, and these were labeled FS and FP for front starboard and front port, respectively.  

Small lead dots that were approximately 3 mm in diameter were placed in the four corners of each area. These dots could 

easily be seen on the IR imager when collecting data, which ensured that the entire area under inspection was being 

captured and facilitated the alignment of thermal images to form a mosaic over the fuselage.  The thermal hood was 

mounted onto an extension boom as shown in figure 2.  The extension boom was manipulated manually.  To access the 

top and bottom areas, the fuselage was rotated using an overhead crane. 

 

 

Figure 2. Thermal inspection setup for forward section measurements. 

Hood 

Extension 
Boom 



 

 
 

 

3. PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) is common for processing of thermal data [5,6]. This algorithm is based on 

decomposition of the thermal data into its principal components or eigenvectors.  Singular value decomposition is a 

routine used to find the singular values and corresponding eigenvectors of a matrix.  Since thermal NDE signals are 

slowly decaying waveforms, the predominant variations of the entire data set are usually contained in the first or second 

eigenvectors, and thus account for most of the data variance of interest.  The principle components are computed by 

defining a data matrix A, for each data set, where the time variations are along the columns and the spatial image pixel 

points are row-wise. The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension.  The covariance matrix is defined as the AT*A.  The covariance matrix is now a square matrix 

of number of images used for processing.  The covariance matrix can then be decomposed using singular value 

decomposition as: 

 

                                                  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑈 ∗ 𝑆 ∗  𝑈 𝑇                                  (1) 
 

where S is a diagonal matrix containing the squares of the singular values and U is an orthogonal matrix, which contains 

the basis functions or eigenvectors describing the time variations. The eigenvectors can be obtained from the columns of 

U. The PCA inspection image is calculated by dot product multiplication of the selected eigenvector times the 

temperature response (data matrix A), pixel by pixel.  

3.1 Local Eigenvector Calculation  

For each data set using region of interest pixels of 514 x 369, local eigenvectors are calculated for their respective PCA 

inspection images.  Shown in figure 3 are eigenvectors calculated for a typical thermal data set (starboard side row I 

column 4).  A processing time window of 1.5 to 4.83 seconds was used (200 frames).  A time delay of 1.5 seconds 

allowed enough time for the heat to flow through the composite face sheet and into the core and 4.83 seconds was 

sufficient time to provide good contrast of the underlying geometry [4]. Some thicker laminate regions around the door 

and window frames would require longer time windows, however for this study only sandwich structure was of interest.  

For this time window the thermal images were processed using principal component analysis to determine the 

eigenvalues and respective eigenvectors. 

Eigenvector #1 has a slow decay, dominated by the transient cool down after the flash and corresponds to an eigenvalue 

of 2,076.4.  This represents the dominate variance in the data set.  Eigenvector #2 corresponds to an eigenvalue of 2.67 

and is less dominate.  This defines the contrast variance from substructure that is more deeply buried within the 

composite with a maximum of around 2.75 seconds after the flash. Eigenvector #3 and #4 correspond to eigenvalues 

0.38 and 0.13 respectively.  As shown in figure 3, these eigenvectors are more influenced by noise and thus result in 

images that have less spatial detail of interest.  The first or second eigenvector PCA image provides good contrast for 

defect detection [4].  This is shown in figure 4 where the processed images from 3 data sets, starboard side Row I 

columns: 4, 5, and 6 are assembled to correspond to the visible image.  The eigenvector #2 images clearly show the 

substructure as compared to eigenvector #1, #3, and #4 images. 

 

Figure 3. Comparison of eigenvectors 1 through 4. 



 

 
 

 

 

Figure 4. Comparison of eigenvectors #1 through #4 processed imagery with eigenvector #2 showing good underlying contrast. 

 

3.2 Fixed Eigenvector Calculation  

To facilitate comparison of inspection images a fixed eigenvector processing approach is used [6].  The fixed 

eigenvector processing approach utilizes an averaged covariance matrix from all the data sets.  This is given in equation 

2 where i is the data set number, N is the total number of data sets, and Ai is the respective data matrix.   

                                           𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  
1

𝑁
∑  𝐴𝑖  

𝑇 𝐴𝑖 
𝑁
𝑖=1                                   (2) 

 

From the averaged covariance matrix a single set of eigenvectors are calculated.  The selected eigenvector, in our case 

eigenvector #2, is then used to process all the data sets by matrix multiplication of the fixed eigenvector with the data 

matrix A for a given data set.  This assures the pixel grayscale values are consistent for similar material, underlying 

geometry, or defect. This also provides grayscale uniformity for the assembled images into one larger mosaic inspection 

image.  This can be seen in figure 5 where the processed images from 3 data sets, starboard side Row I columns: 4, 5, 

and 6 are assembled.  The assembled image grayscale values are not consistent from image to image for the local 

eigenvector calculation.  These areas are marked with white circles in figure 5.  The bottom row of images in figure 5 are 

calculated using a fixed eigenvector.  These are more uniform in gray scale from image to image and helps to determine 

consistent underlying geometry or identify defect areas.  This can be seen in figure 6 where the inspection images for the 

entire data set are assembled into one mosaic. This mosaic consists of 477 processed data sets using a fixed eigenvector 

resulting in 477 inspection images. The curved surfaces made assembling the images difficult especially as the diameter 

tapered toward the nose.  Nonetheless, the overall 2-D image provides a good inspection of the OML fuselage forward 

section.  The diagonal darker lines appear to be core spliced areas where core sections are attached using a foam 

adhesive filler with perhaps ply overlaps for reinforcement.  Shown in figure 6 is the inspection area: port side, row n 

column 17 that was erroneously omitted during data collection.  An automated robotic system would be more 

appropriate to ensure entire coverage. 



 

 
 

 

 

Figure 5. Comparison of local to fixed eigenvectors and note uniform grayscale in fixed eigenvector image. 

 

 

Figure 6. Entire data set assembled into one mosaic. This mosaic consists of 477 data sets processed using a fixed eigenvector. 



 

 
 

 

4. DEFECT DETECTION 

The fuselage section has surface visible damage in the form of deep scratches, gouges, and discolored areas.  In addition, 

it was found through handling that water intrusion (water droplets leaking out when rotating fuselage) and crushed core 

damage was also evident.  For some of these defects thermography was effective in determining the extent of the 

damage.  Example inspection images of surface scratches/scuff marks, discoloration, and a gouge is shown in figure 7.  

The thermal inspection images reveal that the damage shape is very similar to the visible imagery.  This indicates the 

damage is localized to the visible shape. This is also true for the gouge defect shown in the bottom right image of figure 

7.  The discolored area shown in the bottom left image of figure 7 is a rust spot.  This rust spot appears to be rusted metal 

(from a metal support) that has adhered to the outer surface.  Without the visible image the corresponding thermal 

inspection image would appear to show a defect at the rust spot location. From figure 7, one can conclude that the visible 

imagery is important to interpret the thermal inspection images.  Additionally, the areas of the fuselage underside were 

not painted and this was enough to change the thermal response as shown in figure 8.  This shows the sensitivity of the 

thermal inspection to “see through the paint” and it appears the paint did not limit the inspection of the fuselage.  

 

Figure 7. Example inspected areas of surface scratches, gouges, and discoloration. 

 

 

Figure 8. Variation in the thermal inspection imagery due to paint. 



 

 
 

 

A crown section adjacent to the cockpit window contained a region of core crushed (larger than the inspection footprint).  

The face sheets in these regions could be compressed to over 1.27 cm by merely pressing on them.  The flash thermal 

inspection was not able to detect the core crushed region as shown in figure 9.  The damaged core does not affect 

thermal response because the Nomex® core thermal properties are very close to those of air.  Lastly, suspected water 

damaged areas were detected just below the starboard side windows.  It appears water may have migrated from the 

window edge into the fuselage.  Water damage is suspected because the fuselage section was exposed to the weather, 

some water was noted dripping (very small amount) from the fuselage during rotation, and also the irregular shape of the 

suspected water damage from the thermal inspection images as shown in figure 10. Sectioning the fuselage would help 

to determine if this is actual water damage.  Also of interest is what underlying change in the thermal properties of the 

substructure would cause the irregular shape detected in figure 10.  Similar suspected water damage areas were also 

detected adjacent to the door bottom.  No passive cool spots were detected that would indicate water evaporation during 

thermal data collection.   

 

 
 

Figure 9. Thermal inspection of core crushed area showing no obvious thermal indication. 

 

 

Figure 10. Thermal inspection of suspected water damaged areas. 

 

5. CONCLUSIONS 

A fixed eigenvector approach using a global covariance matrix was used to inspect the outer area of a forward composite 

fuselage aircraft section covering approximately 36 square meters.  The fixed eigenvector approach was demonstrated to 

be a practical analysis method for the detection and interpretation of various defects such as paint thickness variation, 

possible water intrusion damage, and delamination damage.  Comparison of these results to destructive testing would 

help to validate the thermal measurements.  Also if the fuselage was sectioned into smaller samples then perhaps X-ray 

CT would help validate the suspect water damage areas.  The manual manipulation of the inspection hood and rotation 

of the fuselage required approximately 2 work weeks (80 hours) to collect the data.  An automated robotic inspection 

would be faster and insure full coverage.  
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